

Future USG Guidelines and Recommendations

Scott Rose, NIST

{scottr@nist.gov}
What's Next in DNSSEC
FOSE 2010, March 24th 2010

DNSSEC FISMA Controls in SP 800-53r3

- SC-20 (Authoritative side zone signing)
 - Applies to all levels
 - Does not differentiate between internal and external zones
 - Does not give explicit cryptographic guidance (that can be found in other NIST docs)
- SC-21 (Resolver side DNSSEC validation)
 - System must do validation when requested
 - Applies to HIGH Impact systems only
 - This is expected to change in future revisions (r4)

Other FISMA Controls for DNS/ DNSSEC

- SC-8: Transaction authentication
 - Mentioned DNS transactions, so options are:
 - TSIG/SIG(0)
 - Lower (network) level authentication (IPSec, etc.)
 - For MODERATE and HIGH Impact only
- SC-22: Provisioning
 - Non-DNSSEC security controls
 - Diverse secondaries
 - Platform hardening
 - etc...
 - For MODERATE and HIGH Impact only (now)
 - This may also change in future revisions (r4)

Crypto Guidance for USG

- SP 800-57 Part 1 & 3, and SP 800-81r1
 - Note that the final 800-81r1 is different than the drafts!
 - DNSSEC guidance slightly different than standard USG crypto guidance
 - Due to public nature of DNS (not just inter-USG communication)
 - Network issues with large DNS responses
 - Different Deadlines/phase out periods for algorithms and key lengths

Crypto Guidance: Key Size & Algorithm NIST SP 800-57 Part 1 & 3

- DNSKEY Algorithms
 - Should be migrating to RSA/SHA-256
 - RSA/SHA-1 will have to stick around for a while
 - For public validators which may not understand RSA/SHA-256 (dual signature algorithms in use?).
 - Migrate to ECDSA by 2015 (goal)
 - Not currently specified or implemented yet
- Key Lengths
 - 1024 bit ZSK's still acceptable until 2015
 - The firewall/router problem of large responses
 - KSK must be 2048 bits

INFORMATION TECHNOLOGY LABORATORY

Crypto Guidance: Key Lifetime NIST SP 800-81r1

Largely unchanged

KSK: 1-2 years

- ZSK: 1-3 months

- Local policy may favor shorter periods, but shouldn't favor longer
- No real hard requirements on signature lifetime
 - Obviously shorter than key lifetime (days/weeks)
 - SP 800-81r1 gives recommendations

What's the deal with SHA-1?

- Phased out for inter-USG communications
 - Can't for public, thus the dual use of RSA with SHA-1 and SHA-256 for a period of time
- SHA-1 still acceptable for some uses:
 - HMAC-SHA1 (used in TSIG)
 - if the shared secret string is random and long enough
 - DS and NSEC3 RR's (hash not used for authentication, thus out of scope)
 - Wouldn't hurt to do both (for DS RR's) for a while as well and eventually migrate fully when it is safe to do so.

Resources

- NIST Guidance Docs at http://www.csrc.nist.gov
 - NIST SP 800-57 Parts 1 & 3
 - NIST SP 800-81r1
- NIST Testbed: Secure Naming Infrastructure Pilot (SNIP)
 - http://www.dnsops.gov/

